日々

link permalink

ARM で CubeHash

先日(2017年 11月 30日の日記参照)CPU によるモナコインというか Lyra2REv2 の計算で、ボトルネックとなっていた CubeHash を SSE 化してみました。今回は ARM でチャレンジしてみます。

Raspberry Pi 3(ARM Cortex A53/1.2GHz x 4)で CPU マイナーを実行してみるとたったの 8kH/s しか出ません。4コア並列で動作させると 32kH/s となり、きっちり 4倍になるのは素晴らしい(※)ですが、x64 CPU の 1コアにも敵わないです。

NEON にも Intrinsics があることを知ったので、不親切な NEON 命令のマニュアルと戦いながら、CubeHash を NEON 化してみたところ、10kH/s ほどになりました。

NEON を使った CubeHash の素朴な実装

#if defined(__ARM_NEON__)
#  include <arm_neon.h>
#endif

//...

#define NEON_ROTL(x, n) do { \
		uint32x4_t mw0, mw1; \
		mw0 = vshlq_n_u32((x), (n)); \
		mw1 = vshrq_n_u32((x), 32 - (n)); \
		x = vorrq_u32(mw0, mw1); \
	} while (0);

#define NEON_SWP(a, b) do { \
		uint32x4_t mw; \
		mw = b; \
		b = a; \
		a = mw; \
	} while (0);

#define NEON_STEP5(x) do { \
		uint64x2_t mw; \
		mw = vreinterpretq_u64_u32((x)); \
		mw = vextq_u64(mw, mw, 1); \
		x = vreinterpretq_u32_u64(mw); \
	} while (0);

#define ROUND_ONE_NEON    do { \
		mxg = vaddq_u32(mx0, mxg); \
		mxk = vaddq_u32(mx4, mxk); \
		mxo = vaddq_u32(mx8, mxo); \
		mxs = vaddq_u32(mxc, mxs); \
		NEON_ROTL(mx0, 7); \
		NEON_ROTL(mx4, 7); \
		NEON_ROTL(mx8, 7); \
		NEON_ROTL(mxc, 7); \
		NEON_SWP(mx0, mx8); \
		NEON_SWP(mx4, mxc); \
		mx0 = veorq_u32(mx0, mxg); \
		mx4 = veorq_u32(mx4, mxk); \
		mx8 = veorq_u32(mx8, mxo); \
		mxc = veorq_u32(mxc, mxs); \
		NEON_STEP5(mxg); \
		NEON_STEP5(mxk); \
		NEON_STEP5(mxo); \
		NEON_STEP5(mxs); \
		mxg = vaddq_u32(mx0, mxg); \
		mxk = vaddq_u32(mx4, mxk); \
		mxo = vaddq_u32(mx8, mxo); \
		mxs = vaddq_u32(mxc, mxs); \
		NEON_ROTL(mx0, 11); \
		NEON_ROTL(mx4, 11); \
		NEON_ROTL(mx8, 11); \
		NEON_ROTL(mxc, 11); \
		NEON_SWP(mx0, mx4); \
		NEON_SWP(mx8, mxc); \
		mx0 = veorq_u32(mx0, mxg); \
		mx4 = veorq_u32(mx4, mxk); \
		mx8 = veorq_u32(mx8, mxo); \
		mxc = veorq_u32(mxc, mxs); \
		mxg = vrev64q_u32(mxg); \
		mxk = vrev64q_u32(mxk); \
		mxo = vrev64q_u32(mxo); \
		mxs = vrev64q_u32(mxs); \
	} while (0)

#define SIXTEEN_ROUNDS_NEON   do { \
		int j; \
		uint32x4_t mx0, mx4, mx8, mxc; \
		uint32x4_t mxg, mxk, mxo, mxs; \
		mx0 = vld1q_u32((void *)&x0); \
		mx4 = vld1q_u32((void *)&x4); \
		mx8 = vld1q_u32((void *)&x8); \
		mxc = vld1q_u32((void *)&xc); \
		mxg = vld1q_u32((void *)&xg); \
		mxk = vld1q_u32((void *)&xk); \
		mxo = vld1q_u32((void *)&xo); \
		mxs = vld1q_u32((void *)&xs); \
		for (j = 0; j < 16; j ++) { \
			ROUND_ONE_NEON; \
		} \
		vst1q_u32(&x0, mx0); \
		vst1q_u32(&x4, mx4); \
		vst1q_u32(&x8, mx8); \
		vst1q_u32(&xc, mxc); \
		vst1q_u32(&xg, mxg); \
		vst1q_u32(&xk, mxk); \
		vst1q_u32(&xo, mxo); \
		vst1q_u32(&xs, mxs); \
	} while (0)

//...

#if defined(__ARM_NEON__)
#  define ROUND_ONE    ROUND_ONE_NEON
#  define SIXTEEN_ROUNDS    SIXTEEN_ROUNDS_NEON
#else
#  define ROUND_ONE    ROUND_ONE_SLOW
#  define SIXTEEN_ROUNDS    SIXTEEN_ROUNDS_SLOW
#endif

前回と同様に cpuminer-multi のマクロに無理矢理はめ込んで実装しています。NEON を触るのは初めてで、非効率的な書き方になっているかもしれません。お気づきの点があれば教えてくださいませ。

(※)AMD A10-7600 は昨日書いた通り 1コア 145kH/s ですが、4コア並列だと 145 x 4 = 580kH/s とはならず、少し効率が落ち 490〜500kH/s ほどになります。

コンパイラの本気はどこ行った

前回 SSE 化したときは 1ラウンドの処理だけ書き換えれば事足りましたが、今回 NEON 化したときは 16ラウンドのループも書き換える必要がありました。

何故かというと x64 と違って armhf の場合、コンパイラがあまり良い結果を出力してくれないからです。gcc-7.2 x64 の場合、

  • load
  • add
  • xor
  • store

このような処理をループさせても、生成されたバイナリの逆アセンブルを見ると、

  • load
  • add
  • xor
  • ※に戻る
  • store

以上のように load/store の無駄を検知してループ「外」に追い出してくれました。しかし gcc-4.9 armhf の場合、ループ「内」に load/store が残ってしまい、かなり遅くなります。

原因として gcc のバージョンが古い、アーキテクチャの最適化がこなれてない、NEON の Intrinsics を使うと最適化が制限される、などいくつか考えられますが、今のところ分かりません。gcc-7 にしたらコンパイラが賢くやってくれるようになれば一番楽ですけどね……。

[編集者: すずき]
[更新: 2017年 12月 3日 01:35]
link 編集する

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



こんてんつ

open/close wiki
open/close Java API

過去の日記

open/close 2002年
open/close 2003年
open/close 2004年
open/close 2005年
open/close 2006年
open/close 2007年
open/close 2008年
open/close 2009年
open/close 2010年
open/close 2011年
open/close 2012年
open/close 2013年
open/close 2014年
open/close 2015年
open/close 2016年
open/close 2017年
open/close 過去日記について

その他の情報

open/close アクセス統計
open/close サーバ一覧
open/close サイトの情報