コグノスケ


link 未来から過去へ表示  link 過去から未来へ表示(*)

link もっと前
2023年2月10日 >>> 2023年3月9日
link もっと後

2023年2月10日

卵が割れる階数は?問題

Twitterで見かけて面白かった問題、解法をメモしておきます。

100階建てのビルから卵を落とします。卵はある階よりも低ければ割れませんが、ある階よりも高いと割れます。卵を2つ持っているとき、卵が何階で割れるか調べる方法を提示してください。そのとき卵を落とす最大の回数をできる限り小さくしてください。

という問題です。

基本的な考え方

1階から順に落とせば確実にわかりますが、最大の投擲回数が100回(卵が割れる階数が100Fのとき)になり、最適な方法ではありません。

卵が2個あることを利用し、1個目は複数階を一気に飛ばして(例10F, 20F, 30F, ...)投擲します。例えば10F飛ばしで試すとすると10F, 20F, 30Fで割れず40Fで割れたら、2個目は「最後に割れなかった階の1つ上の階」すなわち31Fから投擲します。このように試すともっと早く卵が割れる階数がわかります。

卵の投擲回数の最大値を計算すると、例えば10F飛ばしであれば1個目が最大10回(10F, 20F, 30F, ..., 90F, 100F)、2個目が最大で9回(x1F〜x9F)なので、19回(卵が割れる階数が99Fのとき)です。100回と比べるとだいぶ少なくなりましたが、まだ無駄が残っています。

答え

固定階数を飛ばす方法だと1個目と2個目の最大の投擲回数の和を見たとき、上の階になるほど悪化します。例えば、

  • 卵が割れる階数が39F: 10F〜30Fまでで3回、31F〜39Fで最大9回 = 12回
  • 卵が割れる階数が99F: 10F〜90Fまでで9回、91F〜99Fで最大9回 = 18回

1個目の投擲方法を変えて最初は10F飛ばし、次は9F飛ばし、その次は8F飛ばし、のようにすると投擲回数の最大値が悪化しないことに気づくと思います。

こんな表で示すとわかりやすいでしょうか。

1個目を投擲する階数次に何階飛ばすか1個目の投擲回数2個目の投擲開始階2個目の最大の投擲回数最大の投擲回数
100 1298 214
97 31194 314
93 41089 414
88 5 983 514
82 6 876 614
75 7 768 714
67 8 659 814
58 9 549 914
4810 4381014
3711 3261114
2512 2131214
1213 1 11112

1個目は12F, 25F, 37F, 48F, 58F, 67F, 75F, 82F, 88F, 93F, 97F, 100Fの順に投擲します。最大で12回です。割れたら最後に成功した階の1つ上の階から投擲すると、最大14回で卵が割れる階数がわかります。

最大の回数になるケースは12通りですが、一例として卵が割れる階数が99Fの場合を示します。12, 25, ..., 100(1個目が割れる), 98, 99(2個目が割れる)の14回になります。

他には1個目を投げる階数を下記のようにしても良いです。

  • 9F, 22F, 34F, 45F, 55F, 64F, 72F, 79F, 85F, 90F, 94F, 97F, 99F, 100F
  • 10F, 23F, 35F, 48F, 56F, 65F, 73F, 80F, 86F, 91F, 95F, 98F, 100F

いずれも投擲回数は最大14回となります。

編集者:すずき(2023/02/14 11:31)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2023年2月13日

CoreMarkのコンパイルオプションをチューンする

目次: RISC-V

以前(2022年12月22日の日記参照)の日記でCoreMarkのスコアを測って表にしました。実はCoreMarkはOfastのみでは最速にはならず、コンパイルオプションをガチガチにチューンすると結構差が出ます。実際にNSITEXE NS31Aの測定結果でお見せしたいと思います。

どうしてNS31Aかというと、非常にシンプルなCPU&自分の会社で作っているので素性が明確であるためです。複雑なCPU、中身の分からないCPUになればなるほど、総当たりでオプションの組み合わせを試す不毛な作業になりがちです。今回はそういう組み合わせ問題を解きたいわけじゃないんで、簡単な奴で行きます。

まずはベースとなるOfastの結果です。実はO3でも結果は同じです。

CoreMark on NS31A(チューン前)
2K performance run parameters for coremark.
CoreMark Size    : 666
Total ticks      : 18912
Total time (secs): 18.912000
Iterations/Sec   : 58.164129
Iterations       : 1100
Compiler version : GCC12.2.0
Compiler flags   : -Ofast -gdwarf-4 -march=rv32im -mabi=ilp32 -mcmodel=medany
Memory location  : Please put data memory location here
                        (e.g. code in flash, data on heap etc)
seedcrc          : 0xe9f5
[0]crclist       : 0xe714
[0]crcmatrix     : 0x1fd7
[0]crcstate      : 0x8e3a
[0]crcfinal      : 0x33ff
Correct operation validated. See README.md for run and reporting rules.
CoreMark 1.0 : 58.164129 / GCC12.2.0 -Ofast -gdwarf-4 -march=rv32im -mabi=ilp32 -mcmodel=medany   / Heap

動作周波数は25MHzですので、58.164129 / 25 = 2.326 CM/MHz です。

コンパイルオプションを足そう

最適化の基本となる、ループアンローリング、インライン化(-funroll-all-loops, -finline-functions)を足します。

キャッシュラインが32バイトなので、関数の先頭を32バイト境界に配置します(-falign-functions=32)。関数先頭で命令キャッシュミスヒットが発生したときに、同じキャッシュラインに後続の命令(1ラインに32 / 4 = 8命令)が載ります。後続の命令フェッチがキャッシュヒットすれば、最初のミスヒットを挽回できるだろうという目的です。

ジャンプやループの際に実行しない命令が中途半端にキャッシュに取り込まれないよう(= 利用効率の向上)、ジャンプやループの位置は8バイト境界に配置します(-falign-jumps=8 -falign-loops=8)。これも32バイト境界にすべきかと思いましたが、コード領域が散逸しすぎるためか逆に遅いです。

基本的に関数はインライン化した方がcall, retを省略、レジスタ共用など全体的に最適化できて速いです。しかしNS31Aは命令キャッシュが小さめ(FPGA向けコンフィグでは16KB)なので、無差別に関数をインライン化すると命令キャッシュがあふれてキャッシュミスヒットが発生してしまい、逆に遅くなります。

従ってあまりにも大きな関数はインライン化しないように設定します(-finline-limit=300)。デフォルト値600の1/2にしています(※)。

CoreMark on NS31A(チューン後)
2K performance run parameters for coremark.
CoreMark Size    : 666
Total ticks      : 15819
Total time (secs): 15.819000
Iterations/Sec   : 69.536633
Iterations       : 1100
Compiler version : GCC12.2.0
Compiler flags   : -Ofast -gdwarf-4 -march=rv32im -mabi=ilp32 -mcmodel=medany -funroll-all-loops -finline-functions -finline-limit=300 -falign-functions=32 -falign-jumps=8 -falign-loops=8
Memory location  : Please put data memory location here
                        (e.g. code in flash, data on heap etc)
seedcrc          : 0xe9f5
[0]crclist       : 0xe714
[0]crcmatrix     : 0x1fd7
[0]crcstate      : 0x8e3a
[0]crcfinal      : 0x33ff
Correct operation validated. See README.md for run and reporting rules.
CoreMark 1.0 : 69.536633 / GCC12.2.0 -Ofast -gdwarf-4 -march=rv32im -mabi=ilp32 -mcmodel=medany -funroll-all-loops -finline-functions -finline-limit=300 -falign-functions=32 -falign-jumps=8 -falign-loops=8  / Heap

動作周波数は25MHzですので、69.536633 / 25 = 2.781 CM/MHzです。ハードウェアは何も変えていませんが、性能1.2倍です。コンパイルオプションの威力恐るべし。

(※)この数値はGCC内部で使う仮想命令のライン数らしく、300が本当に適切か示すのは不可能です。マニュアルを見ると1/2や1/4に調整することが多いようなので、それに倣っています(参考: GCCのマニュアル)。

編集者:すずき(2023/02/13 19:52)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2023年2月25日

東京の道の名前

東京の道はようわからん通称(明治通り、みたいなやつ)が付いています。東京育ちの人にはなじみ深い名前だと思うんですが、都外出身者からすると、東京の道の通称と国道何号線、都道何号線の区分が全く合っていないので、知らない場所の道の通称を言われると結構困ります。

なぜかというと国道何号線、都道何号線という表記は地図で省かれることはない一方で、東京の道の通称は高速道路や地下鉄と重なったときに省かれてしまうことがあるためです。地図を見ても「〇〇通り?何それ?どこ??」と困惑します。

通称とは一体?

東京の道の通称は東京都が決めています(東京都通称道路名〜道路のわかりやすく親しみやすい名称〜 - 東京都建設局)。道案内の青看板に載るような名前と思ってもらえばわかりやすいでしょう。

東京都がまとめてくれているのはありがたいんですが「東京都が公式に定めた通称」というのは不思議な響きで、それは公称ではなかろうか?通称とは一体……??

なぜか存在しない大正通り

東京の道の通称には「年号」+「通り」という名前がいくつかあります。このうちなぜか大正通りだけは存在しません。不思議ですね。

  • 江戸通り(No.26: 国道6号など、千代田区大手町二丁目〜台東区花川戸二丁目)
  • 明治通り(No.3: 都道416, 306号など、港区南麻布二丁目〜江東区夢の島)
  • 昭和通り(No.24: 国道4号など、港区新橋一丁目〜台東区根岸五丁目)

調べてみると割と有名な話らしいです(「明治通り」「昭和通り」はあるのに、なぜか「大正通り」はない東京のちょっとした謎 - アーバン ライフ メトロ)。詳しくは記事を読んでいただくとして、簡単に言えば、

  • 東京日日新聞の公募で大正通りと呼ぼうとした(今の靖国通り)が定着せず
  • 東京都の公募で靖国通りが選ばれた、東京都建設局のまとめる一覧に大正通りは入ってない
  • 東京に「大正通り」はある(武蔵野市吉祥寺)
  • 「平成通り」もある(中央区兜町〜築地二丁目)
  • 「令和通り」はまだない

ということみたいです。

編集者:すずき(2023/02/27 00:16)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2023年2月27日

SIMDを使ったお手軽最適化 - その1

目次: ベンチマーク

お手軽最適化のメモです。行列の掛け算を題材にします。

最初にお断りしておくとGEMMのような汎用処理の場合は、自分で最適化せずにOpenBLASを使ってください(素人が最適化しても勝てません)。しかしOpenBLASのような限界まで最適化されたコードは誰でも簡単には書ける、とは言えません。

スカラー処理だと遅いけれど、お手軽に最適化(数倍程度)がしたいときの参考になれば幸いです。

GEMMってなんですか?

GEMMはGeneral Matrix Multiplyの略で、高校数学辺りでやった(はず)の行列の掛け算のことです。floatの場合はSGEMMと呼ばれ、doubleの場合はDGEMMと呼ばれます。最適化の題材はどちらでも良いんですけど、今回はSGEMMを使います。

忘れている方のために2行3列の行列Aと3行2列Bの掛け算A x B = Cだとこんな感じです。


行列の掛け算の例

Aの列数とBの行数は一致していなければなりません。行数と列数の関係を表すと、行列A(M行K列)x行列B(K行N列)= 行列C(M行N列)となります。


行列の掛け算の行数と列数

Cの1要素を計算するには、Aの1行とBの1列が必要です。式、および、視覚的に示すと下記のようになります。


行列の掛け算(式)


行列の掛け算(Aの行とBの列の関係)

説明はこれくらいにしてコードを見ましょう。

基本コース - 素朴に演算

SGEMMを素直にコードにするとこんな感じです。行方向にデータを格納(Row-major orderといいます)しているので、N列の行列Cのi行j列(以降Ci,jと書く)にアクセスする際はc[i * N + j] とします。

SGEMM素朴版

void sgemm_naive(const float *a, const float *b, float *c, int mm, int nn, int kk)
{
	for (int i = 0; i < mm; i++) {
		for (int j = 0; j < nn; j++) {
			c[i * nn + j] = 0.0f;
			for (int k = 0; k < kk; k++) {
				c[i * nn + j] += a[i * kk + k] * b[k * nn + j];
			}
		}
	}
}

行列のサイズを適当に設定(M = 1519, N = 1517, K = 1523)して、実行時間を測ります。CPUはRyzen 7 5700Xです。

SGEMM素朴版の実行時間
$ gcc -Wall -g -O2 -static sgemm.c

$ ./a.out
matrix size: M:1519, N:1517, K:1523
time: 2.277758

実行時間は実行するたびに変わりますが、大体2.27秒くらいでしょうか。OpenBLASのシングルスレッド(環境変数OPENBLAS_NUM_THREADS=1にするとシングルスレッド動作になります)で計算した時間を見ると、

OpenBLASのSGEMMを呼ぶコード

	c_ex = malloc(m * n * sizeof(float) * 2);

	// C = alpha AB + beta C
	float alpha = 1.0f, beta = 0.0f;
	int lda = k, ldb = n, ldc = n;

	printf("----- use CBLAS\n");

	gettimeofday(&st, NULL);
	cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
		m, n, k, alpha, a, lda, b, ldb, beta, c_ex, ldc);
	gettimeofday(&ed, NULL);
	timersub(&ed, &st, &ela);

	printf("verify: %d.%06d\n", (int)ela.tv_sec, (int)ela.tv_usec);
OpenBLASのSGEMM実行時間
$ export OPENBLAS_NUM_THREADS=1

$ gcc -Wall -g -O2 -static -L path/to/openblas/ sgemm.c -lopenblas

$ ./a.out
matrix size: M:1519, N:1517, K:1523
----- use CBLAS
verify: 0.052149

わずか0.05秒、実に43倍という驚異のスピードです。すごいですね……。

行列の掛け算の説明でほぼ終わってしまいました。お手軽最適化はまた次に。

編集者:すずき(2024/01/13 14:33)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2023年2月28日

SIMDを使ったお手軽最適化 - その2

目次: ベンチマーク

お手軽最適化のメモ、昨日の続きです。行列の掛け算を題材にします。前回は行列の掛け算と素朴な実装のコードを紹介しました。今回はお手軽最適化を紹介します。

スカラー処理だと遅いけれど、お手軽に最適化(数倍程度)がしたいときの参考になれば幸いです。

お手軽コース - 自動ベクトル化

素朴版のコードですとi, j, kの順でループになっていて、kを最内ループにしていました。ループ内の計算は、

ループ内の計算式

c[i * nn + j] += a[i * kk + k] * b[k * nn + j]

でした。このときメモリアクセスのパターンは、

  • A: 行方向に連続(メモリアクセスパターンは連続 = 自動ベクトル化できる)
  • B: 列方向に連続(メモリアクセスパターンは飛び飛びアクセス = 自動ベクトル化できない)
  • C: 同一要素を何度もアクセス


素朴版の計算順(i, j, kループ)

です。GCCの自動ベクトル化ですと、このアクセスパターンをうまく最適化できないようです。対象が最内ループのみなのかもしれません。ループを入れ替えjを最内にして、BとCを行方向に読むようにします。するとメモリアクセスのパターンは、

  • A: 同一要素を何度もアクセス
  • B: 行方向に連続(メモリアクセスパターンは連続 = 自動ベクトル化できる)
  • C: 行方向に連続(メモリアクセスパターンは連続 = 自動ベクトル化できる)


ループ入れ替え版の計算順(i, k, jループ)

です。ループを入れ替えるとループ内でCの0初期化ができないので、ループの外に追い出して最終的に下記のようなコードになります。

SGEMMループ入れ替え版

void sgemm_inner(const float *a, const float *b, float *c, int mm, int nn, int kk)
{
	for (int i = 0; i < mm; i++) {
		for (int j = 0; j < nn; j++) {
			c[i * nn + j] = 0.0f;
		}
	}

	for (int i = 0; i < mm; i++) {
		for (int k = 0; k < kk; k++) {
			for (int j = 0; j < nn; j++) {    //★★jが最内ループ★★
				c[i * nn + j] += a[i * kk + k] * b[k * nn + j];
			}
		}
	}
}
SGEMMループ入れ替え版の実行時間
$ gcc -Wall -g -O2 -fno-tree-vectorize -static -march=znver3 sgemm.c

$ ./a.out
matrix size: M:1519, N:1517, K:1523
time: 1.528314

(参考: 素朴版の実行時間)
time: 2.277758

(参考: OpenBLASシングルスレッドの実行時間)
$ export OPENBLAS_NUM_THREADS=1

----- use CBLAS
verify: 0.052149

ループ入れ替えで倍くらい速くなっていますが、この最適化の本領はコンパイラの自動ベクトル化です。GCCならば -ftree-vectorizeオプションを指定すると、行列Bと行列CへのアクセスにSIMD命令を使うようになります。

Ryzen 7 5700Xの場合はAVX2命令を使えます。他のCPUをお使いの場合は -marchを適宜変更してください。

SGEMMループ入れ替え版+自動ベクトル化の実行時間
$ gcc -Wall -g -O2 -ftree-vectorize -static -march=znver3 sgemm.c

$ ./a.out
matrix size: M:1519, N:1517, K:1523
time: 0.181133

(参考: OpenBLASシングルスレッドの実行時間)
$ export OPENBLAS_NUM_THREADS=1

----- use CBLAS
verify: 0.052149

素朴版とOpenBLASでは1/43もの差がありましたが、ループ入れ替えと自動ベクトル化によってOpenBLASの1/3.5程度まで近づきました。GEMMが計算偏重の処理で最適化の効果が出やすい、という点を考慮する必要はあるものの僅かな書き換えで得られる効果にしては割と良いのではないでしょうか。

もう少し頑張るコース - intrinsics

ソースコードを書き換える元気があれば、別の最適化方法もあります。GEMM特有の話に近付いてしまい、汎用的な話から遠ざかりますが、最適化ポイントの例という意味では参考になるはず……です。たぶん。

今回はSIMD命令でjの方向に一気に読むまでは同じですが、jの方向に進めるのではなく、kの方向に進めて、計算結果をCに足していく戦略です。具体的に言えばAi,kとBk,j〜Bk,j+7の8要素を一気に掛け算してCi,j〜Ci,j+7へ一気に足します。なぜ8要素かというとAVX/AVX2のレジスタ長(256bit)を使うと、32bit長のfloatを一度に8要素処理できるためです。


Intrinsics版の計算順

SIMD命令にはAi,kをSIMDレジスタの全要素に配る命令(set1_psから生成されるbroadcast命令)や、掛け算と足し算を一度に行うfmadd命令など、この計算順に最適な命令が揃っています。


broadcast命令


fmadd命令

AVX/AVX2のIntrinsicsの詳細についてはIntelのサイトなどを見ていただくとして(Intel Intrinsics Guide)、コードは下記のようになります。

SGEMM Intrinsics版

#include <immintrin.h>

void sgemm_avx(const float *a, const float *b, float *c, int mm, int nn, int kk)
{
	for (int j = 0; j < nn;) {
		if (nn - j >= 8) {
			for (int i = 0; i < mm; i++) {
				__m256 vc = _mm256_set1_ps(0.0f);

				for (int k = 0; k < kk; k++) {
					__m256 va = _mm256_set1_ps(a[i * kk + k]);
					__m256 vb = _mm256_loadu_ps(&b[k * nn + j]);
					vc = _mm256_fmadd_ps(va, vb, vc);
				}

				_mm256_storeu_ps(&c[i * nn + j], vc);
			}

			j += 8;
		} else {
			for (int i = 0; i < mm; i++) {
				c[i * nn + j] = 0.0f;
				for (int k = 0; k < kk; k++) {
					c[i * nn + j] += a[i * kk + k] * b[k * nn + j];
				}
			}

			j++;
		}
	}
}
SGEMM Intrinsics版の実行時間
$ gcc -Wall -g -O2 -static -march=znver3 sgemm.c

$ ./a.out
matrix size: M:1519, N:1517, K:1523
time: 0.384861

(参考: 素朴版の実行時間)
time: 2.277758

(参考: ループ入れ替え版+自動ベクトル化の実行時間)
time: 0.181133

(参考: OpenBLASシングルスレッドの実行時間)
$ export OPENBLAS_NUM_THREADS=1

----- use CBLAS
verify: 0.052149

素朴版と比べると6倍速いですが、ループ入れ替え+自動ベクトル化には負けています。

もう少し頑張るコース - ループアンローリング

先程のコードはSIMDレジスタを3個しか同時に使っていませんでした。AVX/AVX2のYMMレジスタは16個もあるのに3個しか使わないのはもったいですから、iのループを8要素ずつアンローリングしてSIMDレジスタを同時にたくさん使いましょう。レジスタをうまく使いまわせば12要素のアンローリング(Bの保持に1個、Cの保持に12個、Aの保持に1個、計14個)まではできそうです。たぶん。

SGEMM Intrinsics+ループアンローリング版

#include <immintrin.h>

void sgemm_avx_unroll8(const float *a, const float *b, float *c, int mm, int nn, int kk)
{
	for (int j = 0; j < nn;) {
		if (nn - j >= 8) {
			int i = 0;

			for (; i < (mm & ~7); i += 8) {
				__m256 vc0 = _mm256_set1_ps(0.0f);
				__m256 vc1 = _mm256_set1_ps(0.0f);
				__m256 vc2 = _mm256_set1_ps(0.0f);
				__m256 vc3 = _mm256_set1_ps(0.0f);
				__m256 vc4 = _mm256_set1_ps(0.0f);
				__m256 vc5 = _mm256_set1_ps(0.0f);
				__m256 vc6 = _mm256_set1_ps(0.0f);
				__m256 vc7 = _mm256_set1_ps(0.0f);

				for (int k = 0; k < kk; k++) {
					__m256 vb = _mm256_loadu_ps(&b[k * nn + j]);

					__m256 va0 = _mm256_set1_ps(a[(i+0) * kk + k]);
					__m256 va1 = _mm256_set1_ps(a[(i+1) * kk + k]);
					__m256 va2 = _mm256_set1_ps(a[(i+2) * kk + k]);
					__m256 va3 = _mm256_set1_ps(a[(i+3) * kk + k]);
					__m256 va4 = _mm256_set1_ps(a[(i+4) * kk + k]);
					__m256 va5 = _mm256_set1_ps(a[(i+5) * kk + k]);
					__m256 va6 = _mm256_set1_ps(a[(i+6) * kk + k]);
					__m256 va7 = _mm256_set1_ps(a[(i+7) * kk + k]);

					vc0 = _mm256_fmadd_ps(va0, vb, vc0);
					vc1 = _mm256_fmadd_ps(va1, vb, vc1);
					vc2 = _mm256_fmadd_ps(va2, vb, vc2);
					vc3 = _mm256_fmadd_ps(va3, vb, vc3);
					vc4 = _mm256_fmadd_ps(va4, vb, vc4);
					vc5 = _mm256_fmadd_ps(va5, vb, vc5);
					vc6 = _mm256_fmadd_ps(va6, vb, vc6);
					vc7 = _mm256_fmadd_ps(va7, vb, vc7);
				}

				_mm256_storeu_ps(&c[(i+0) * nn + j], vc0);
				_mm256_storeu_ps(&c[(i+1) * nn + j], vc1);
				_mm256_storeu_ps(&c[(i+2) * nn + j], vc2);
				_mm256_storeu_ps(&c[(i+3) * nn + j], vc3);
				_mm256_storeu_ps(&c[(i+4) * nn + j], vc4);
				_mm256_storeu_ps(&c[(i+5) * nn + j], vc5);
				_mm256_storeu_ps(&c[(i+6) * nn + j], vc6);
				_mm256_storeu_ps(&c[(i+7) * nn + j], vc7);
			}

			for (; i < mm; i++) {
				__m256 vc = _mm256_set1_ps(0.0f);

				for (int k = 0; k < kk; k++) {
					__m256 vb = _mm256_loadu_ps(&b[k * nn + j]);
					__m256 va = _mm256_broadcast_ss(&a[(i+0) * kk + k]);
					vc = _mm256_fmadd_ps(va, vb, vc);
				}

				_mm256_storeu_ps(&c[i * nn + j], vc);
			}

			j += 8;
		} else {
			for (int i = 0; i < mm; i++) {
				c[i * nn + j] = 0.0f;
				for (int k = 0; k < kk; k++) {
					c[i * nn + j] += a[i * kk + k] * b[k * nn + j];
				}
			}

			j++;
		}
	}
}
SGEMM Intrinsics+ループアンローリング版の実行時間
$ ./a.out
matrix size: M:1519, N:1517, K:1523
time: 0.108420

(参考: ループ入れ替え版+自動ベクトル化の実行時間)
time: 0.181133

(参考: OpenBLASシングルスレッドの実行時間)
$ export OPENBLAS_NUM_THREADS=1

----- use CBLAS
verify: 0.052149

もはや最適化前のコードの原型がありませんが、ループ入れ替え版+自動ベクトル化の1.7倍くらいの速度になりました。OpenBLASの1/2程度まで迫っています。この最適化手法が汎用的か?と聞かれると何とも言えないですが、SIMDレジスタを同時にたくさん使う、最内ループ以外もアンローリング(最内ループはコンパイラがやってくれる)辺りは割と汎用的なアイデアです。

あと前回言った通り、GEMMは最適化の題材として取り上げただけなので、実際にGEMMを計算する場合はこのコードや自分で書いたコードを使うのではなく、信頼と実績のOpenBLASを使ってくださいませ。

編集者:すずき(2024/01/13 14:33)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



2023年3月3日

Dockerのお掃除コマンド

目次: 自宅サーバー

Dockerを使っていると要らなくなったイメージ、コンテナ、ビルドキャッシュがたまってきて、/varディレクトリ以下が肥大化していることがあります。いつも忘れてしまうお掃除用のコマンドをメモしておきます。

各種お掃除方法と確認方法
### 終了しているcontainerの削除

$ docker container prune

### 確認

$ docker container ls -a


### タグもなく使われていないimageの削除

$ docker image prune

### 確認

$ docker image ls -a


### build cacheの削除

$ docker builder prune

### 確認

$ docker builder ls

Dockerがディスク容量をどの程度使用しているのかについてはsystem dfが便利(docker system dfのマニュアル)です。

使用済みディスク容量の確認
$ docker system df

TYPE            TOTAL     ACTIVE    SIZE      RECLAIMABLE
Images          1         1         14.26GB   0B (0%)
Containers      2         1         0B        0B
Local Volumes   0         0         0B        0B
Build Cache     17        0         0B        0B

昔はコマンドの名前に一貫性がなかった記憶がありますが、今はxxx lsとすれば大抵の場合は一覧が出るため統一感があります。私のようなライトユーザーがやりたいと思う程度の機能は、大抵既に存在しており良くできていてありがたいです。

編集者:すずき(2024/01/13 14:29)

コメント一覧

  • コメントはありません。
open/close この記事にコメントする



link もっと前
2023年2月10日 >>> 2023年3月9日
link もっと後

管理用メニュー

link 記事を新規作成

<2023>
<<<02>>>
---1234
567891011
12131415161718
19202122232425
262728----

最近のコメント5件

  • link 24年6月17日
    すずきさん (06/23 00:12)
    「ありがとうございます。バルコニーではない...」
  • link 24年6月17日
    hdkさん (06/22 22:08)
    「GPSの最初の同期を取る時は見晴らしのい...」
  • link 24年5月16日
    すずきさん (05/21 11:41)
    「あー、確かにdpkg-reconfigu...」
  • link 24年5月16日
    hdkさん (05/21 08:55)
    「システム全体のlocale設定はDebi...」
  • link 24年5月17日
    すずきさん (05/20 13:16)
    「そうですねえ、普通はStandardなの...」

最近の記事3件

  • link 24年6月27日
    すずき (06/30 15:39)
    「[何もない組み込み環境でDOOMを動かす - その4 - 自作OSの組み込み環境へ移植] 目次: RISC-V目次: 独自OS...」
  • link 22年12月13日
    すずき (06/30 15:38)
    「[独自OS - まとめリンク] 目次: 独自OS一覧が欲しくなったので作りました。自作OSの紹介その1 - 概要自作OSの紹介...」
  • link 21年6月18日
    すずき (06/29 22:28)
    「[RISC-V - まとめリンク] 目次: RISC-VSiFive社ボードの話、CoreMarkの話のまとめ。RISC-V ...」
link もっとみる

こんてんつ

open/close wiki
open/close Linux JM
open/close Java API

過去の日記

open/close 2002年
open/close 2003年
open/close 2004年
open/close 2005年
open/close 2006年
open/close 2007年
open/close 2008年
open/close 2009年
open/close 2010年
open/close 2011年
open/close 2012年
open/close 2013年
open/close 2014年
open/close 2015年
open/close 2016年
open/close 2017年
open/close 2018年
open/close 2019年
open/close 2020年
open/close 2021年
open/close 2022年
open/close 2023年
open/close 2024年
open/close 過去日記について

その他の情報

open/close アクセス統計
open/close サーバ一覧
open/close サイトの情報

合計:  counter total
本日:  counter today

link About www.katsuster.net
RDFファイル RSS 1.0

最終更新: 06/30 15:39