目次: PC
前回はSin波を見ました(2014年10月18日の日記参照)が、今回は矩形波を見てみようと思います。
サンプリング周波数の1/2の周波数(以降、1/2 fsと書きます)の矩形波のLPCMデータを下記のように表すとします。
矩形波と書きましたが、このデータをアナログに変換しても矩形波にはなりません。下記のような22kHzのSin波になります。
私もそれほど詳しくはありませんが、標本化定理と言って、ある波形をサンプリング周波数44kHzでサンプリングした際に完全に元の波形に戻せるのは1/2 fs未満、つまり22kHzまでの周波数を持った波形です。それ以上は情報が失われ、元に戻せません。
見た目は周波数22kHzの波形に見える矩形波でも、波形の立上がり、立下りの部分に高い周波数を含んでいて、この部分が失われてしまうため、元に戻らないのです。
同じ理屈で1/4 fsの矩形波、つまり44kHzのサンプリング周波数で、11kHzの矩形波を表そうとしても、立上がり、立下りの部分が失われ、11kHzのSin波になります。LPCMデータの最大値は変わりませんが、22kHzの時より振幅が大きくなるのが面白いですね。
見た目が矩形波らしくなるのは1/6 fsか1/8 fsくらいでしょうか。つまり44kHzのサンプリング周波数で、7.4kHzか5.5kHzの矩形波を表そうとしたときです。
では、下記のLPCMデータを使ってUSB-DACで再生してみます。
各種揃えましたが、訳あって、この中からサンプリング周波数44kHzのデータを使うことにします。まずは1/2 fsから。
ONKYO SE-U33GXV2の22kHz矩形波出力(fs = 44.1kHz)
綺麗なSin波です。次は1/4 fsです。
ONKYO SE-U33GXV2の11kHz矩形波出力(fs = 44.1kHz)
これも綺麗なSin波ですね。振幅が先ほどより大きいのがわかると思います。次は1/6 fsと1/8 fsです。
ONKYO SE-U33GXV2の7.4kHz矩形波出力(fs = 44.1kHz)
ONKYO SE-U33GXV2の5.5kHz矩形波出力(fs = 44.1kHz)
角の部分はまだガタガタしていますが、矩形波らしくなってきたのがわかります。
< | 2014 | > | ||||
<< | < | 11 | > | >> | ||
日 | 月 | 火 | 水 | 木 | 金 | 土 |
- | - | - | - | - | - | 1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | - | - | - | - | - | - |
合計:
本日: