クラッキングでぶっ壊されてしまったニコニコ動画が復活し、シン・ニコニコ動画になって帰ってきました。いちユーザーとしては嬉しい気分でいっぱいです。
しかし前と比べて困ったことが起きていて、BizHawkで出力した動画をシン・ニコニコ動画にアップロードしようとすると「この動画の映像形式には対応していません」とエラーが出てしまって投稿できません。試行錯誤の末、解決方法を見つけたのでメモしておきます。
端的に言えば原因はピクセルフォーマットでした。BizHawkは特に何も言わないとYUV444で出力しますが、ニコニコ動画はYUV420でないと受け付けてくれないようです。どこにもそんな制約は書いていないため、仕様か?バグか?どちらともわかりません。
YUV420にする方法ですけども、BizHawkの出力設定を[Custom]にして、下記のようにピクセルフォーマットを明示的に指定すればYUV420で出力してくれました。
-c:a aac -c:v libx264 -preset ultrafast -pix_fmt yuv420p -f mp4
もしすでにYUV444で出力済みの動画ならば、ffmpegを使って再エンコードすれば良いです。
$ ffmpeg -i input.mp4 \ -vcodec libx264 -vb 2048000 -r 60 -s 1280x720 -pix_fmt yuv420p \ -acodec aac -ar 44100 -ab 192000 output.mp4
動画ビットレート(-vb)、フレームレート(-r)、動画サイズ(-s)は元の動画に応じて調整してください。
目次: Linux
以前、OpenSBIがRISC-V CPUの拡張機能をどのように認識し有効にするか調べました。今回はどのようにCPUの数を認識するか調べます。OpenSBIのプラットフォームは今まで同様にgenericを使います。
実はそんなに難しくなく、デバイスツリーの/cpuノードを読みに行くだけのようです。/cpuノードの例としてQEMU virtマシン、4CPUで起動したときにQEMUが生成するデバイスツリーを下記に示します。長いのでCPU_2, 3は省略しています。名前やラベル、regが2や3になるだけです。
/ { cpus { #address-cells = <1>; #size-cells = <0>; timebase-frequency = <10000000>; cpu0: cpu@0 { compatible = "riscv"; reg = <0>; device_type = "cpu"; riscv,cbop-block-size = <64>; riscv,cboz-block-size = <64>; riscv,cbom-block-size = <64>; riscv,isa-extensions = "i", "m", "a", "f", "d", "c", "h", "zic64b", "zicbom", "zicbop", "zicboz", "ziccamoa", "ziccif", "zicclsm", "ziccrse", "zicntr", "zicsr", "zifencei", "zihintntl", "zihintpause", "zihpm", "za64rs", "zawrs", "zfa", "zca", "zcd", "zba", "zbb", "zbc", "zbs", "ssccptr", "sscounterenw", "sstc", "sstvala", "sstvecd", "svadu"; riscv,isa-base = "rv64i"; riscv,isa = "rv64imafdch_zic64b_zicbom_zicbop_zicboz_ziccamoa_ziccif_zicclsm_ziccrse_zicntr_zicsr_zifencei_zihintntl_zihintpause_zihpm_za64rs_zawrs_zfa_zca_zcd_zba_zbb_zbc_zbs_ssccptr_sscounterenw_sstc_sstvala_sstvecd_svadu"; mmu-type = "riscv,sv57"; status = "okay"; cpu0_intc: interrupt-controller { compatible = "riscv,cpu-intc"; interrupt-controller; #interrupt-cells = <1>; }; }; cpu1: cpu@1 { compatible = "riscv"; reg = <1>; device_type = "cpu"; riscv,cbop-block-size = <64>; riscv,cboz-block-size = <64>; riscv,cbom-block-size = <64>; riscv,isa-extensions = "i", "m", "a", "f", "d", "c", "h", "zic64b", "zicbom", "zicbop", "zicboz", "ziccamoa", "ziccif", "zicclsm", "ziccrse", "zicntr", "zicsr", "zifencei", "zihintntl", "zihintpause", "zihpm", "za64rs", "zawrs", "zfa", "zca", "zcd", "zba", "zbb", "zbc", "zbs", "ssccptr", "sscounterenw", "sstc", "sstvala", "sstvecd", "svadu"; riscv,isa-base = "rv64i"; riscv,isa = "rv64imafdch_zic64b_zicbom_zicbop_zicboz_ziccamoa_ziccif_zicclsm_ziccrse_zicntr_zicsr_zifencei_zihintntl_zihintpause_zihpm_za64rs_zawrs_zfa_zca_zcd_zba_zbb_zbc_zbs_ssccptr_sscounterenw_sstc_sstvala_sstvecd_svadu"; mmu-type = "riscv,sv57"; status = "okay"; cpu1_intc: interrupt-controller { compatible = "riscv,cpu-intc"; interrupt-controller; #interrupt-cells = <1>; }; }; cpu2: cpu@2 { /* 省略 */ }; cpu3: cpu@3 { /* 省略 */ };
OpenSBIがCPU数を確認するコードは下記のようになっています。
// opensbi/platform/generic/platform.c
unsigned long fw_platform_init(unsigned long arg0, unsigned long arg1,
unsigned long arg2, unsigned long arg3,
unsigned long arg4)
{
const char *model;
void *fdt = (void *)arg1; //★★デバイスツリーのアドレス、レジスタa1を使ってOpenSBIに渡す★★
u32 hartid, hart_count = 0;
int rc, root_offset, cpus_offset, cpu_offset, len;
//...
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0)
goto fail;
fdt_for_each_subnode(cpu_offset, fdt, cpus_offset) {
//★★device_typeがcpu、regプロパティに値が入っていれば、CPUのノードとみなす★★
rc = fdt_parse_hart_id(fdt, cpu_offset, &hartid);
if (rc)
continue;
if (SBI_HARTMASK_MAX_BITS <= hartid)
continue;
//★★statusプロパティがokかokayなら有効なCPUとみなす★★
if (!fdt_node_is_enabled(fdt, cpu_offset))
continue;
//★★ハート数を1つ増やす★★
//★★hartidは連番とは限らないため、hartindexとhartidの対応表を作る★★
generic_hart_index2id[hart_count++] = hartid;
}
//★★platform領域に記録する★★
platform.hart_count = hart_count;
platform.heap_size = fw_platform_calculate_heap_size(hart_count);
platform_has_mlevel_imsic = fdt_check_imsic_mlevel(fdt);
デバイスツリー(正確にはFDT: flattened device tree)の/cpuノードを見て、子ノードがCPUの定義であり、有効ならばhart_countを+1するシンプルなコードです。hartidは連番とは限らないため、hartindex(0からCPU数 - 1までの連番)とhartidの対応表generic_hart_index2id[]も同時に作ります。
無効なCPUの扱いも見ておきます。先程のコードからわかる通りstatus = "disabled"つまり無効なCPUの場合は、hartindexとhartidの対応表(platform.hart_index2id[])にhartidが載りません。例としてQEMUにてCPU 4つで起動し、デバイスツリーでCPU 2だけstatus = "disabled"にしたときのhartindexとhartidの対応表をダンプします。
(gdb) p platform $11 = {opensbi_version = 65541, platform_version = 1, name = "riscv-virtio,qemo", '\000' <repeats 46 times>, features = 2, hart_count = 3, hart_stack_size = 8192, heap_size = 39936, reserved = 0, platform_ops_addr = 2148010200, firmware_context = 0, hart_index2id = 0x80083700 <generic_hart_index2id>} (gdb) p generic_hart_index2id $15 = {0, 1, 3, 0 <repeats 125 times>}
全CPUが有効ならば0, 1, 2, 3となりますが、CPU 2が無効なので0, 1, 3となっていることがわかります。
次にメインCPUがサブCPUを起こしに行くコードを見ます。アセンブラなので若干分かりづらいですが、hartindexとhartidの対応表に自CPUのhartidが登録されていればCPUを起動し、登録されていない場合はCPUを起動しません。
// opensbi/firmware/fw_base.S
_fdt_reloc_done:
//★★メインCPUはこちら★★
//★★初期化処理が終わるとここに到達する★★
//★★_boot_statusにBOOT_STATUS_BOOT_HART_DONEを書き込むとサブCPU側がループを抜ける★★
/* mark boot hart done */
li t0, BOOT_STATUS_BOOT_HART_DONE
lla t1, _boot_status
fence rw, rw
REG_S t0, 0(t1)
j _start_warm
//★★サブCPUはこちら★★
//★★_boot_statusを読みながらループで待っている★★
/* waiting for boot hart to be done (_boot_status == 2) */
_wait_for_boot_hart:
li t0, BOOT_STATUS_BOOT_HART_DONE
lla t1, _boot_status
REG_L t1, 0(t1)
/* Reduce the bus traffic so that boot hart may proceed faster */
div t2, t2, zero
div t2, t2, zero
div t2, t2, zero
bne t0, t1, _wait_for_boot_hart
_start_warm:
/* Reset all registers except ra, a0, a1, a2, a3 and a4 for non-boot HART */
li ra, 0
call _reset_regs
/* Disable all interrupts */
csrw CSR_MIE, zero
//★★platform.hart_index2idを見て、hartidと一致する要素があるか確かめる★★
/* Find HART count and HART stack size */
lla a4, platform
#if __riscv_xlen > 32
lwu s7, SBI_PLATFORM_HART_COUNT_OFFSET(a4)
lwu s8, SBI_PLATFORM_HART_STACK_SIZE_OFFSET(a4)
#else
lw s7, SBI_PLATFORM_HART_COUNT_OFFSET(a4)
lw s8, SBI_PLATFORM_HART_STACK_SIZE_OFFSET(a4)
#endif
//★★s9はplatform.hart_index2id[0]のアドレス★★
REG_L s9, SBI_PLATFORM_HART_INDEX2ID_OFFSET(a4)
/* Find HART id */
csrr s6, CSR_MHARTID
//★★platform.hart_index2idがNULLだったら処理を止める★★
/* Find HART index */
beqz s9, 3f
li a4, 0
//★★a4 = hartindex
//★★a5 = platform.hart_index2id[hartindex]の値(hartindexに対応するhartid)
//★★s6 = CPUのhartid
//★★s7 = hart数
//★★s9 = platform.hart_index2id[hartindex]のアドレス
1:
#if __riscv_xlen > 32
lwu a5, (s9)
#else
lw a5, (s9)
#endif
//★★hartidとplatform.hart_index2id[n]が一致していたら、ループを抜ける★★
beq a5, s6, 2f
//★★s9を進めて、platform.hart_index2id[0], [1], [2], ...を順に調べる★★
add s9, s9, 4
add a4, a4, 1
blt a4, s7, 1b
//★★s6 = hartindex
2: add s6, a4, zero
//★★hartindexがhart数を超えているか?
//★★ 超える : CPUが無効である、サブCPUを起動しない -> _start_hangへ
//★★ 超えない: CPUが有効である、サブCPUを起動する -> ブランチ命令の先へ
3: bge s6, s7, _start_hang
//...
OpenSBIのロゴが出たあたりでブレークして各スレッドの実行している関数名を見ると、下記のようになります。
(gdb) info thr Id Target Id Frame 1 Thread 1.1 (CPU#0 [halted ]) sbi_hsm_hart_wait (scratch=0x8008c000, hartid=0) at opensbi/lib/sbi/sbi_hsm.c:177 2 Thread 1.2 (CPU#1 [running]) 0x0000000080020ffe in fdt32_to_cpu (x=50331648) at opensbi/lib/utils/libfdt/libfdt_env.h:57 * 3 Thread 1.3 (CPU#2 [halted ]) _start_hang () at opensbi/firmware/fw_base.S:409 4 Thread 1.4 (CPU#3 [halted ]) sbi_hsm_hart_wait (scratch=0x80088000, hartid=3) at opensbi/lib/sbi/sbi_hsm.c:177
Thread Id 3つまりCPU 2(※)だけ_start_hang()に居ることがわかりますね。
(※)GDBのThread Idは1スタートなのでThread Id 1, 2, 3, 4がCPU 0, 1, 2, 3に相当します。
目次: Java
目次: Yocto
Yoctoは特に何も指定せずにビルドすると全スレッドを使おうとします。この挙動はコンパイルだけでなくFetchでも同様のようです。最近のCPUは一般向けでも8〜16スレッドが珍しくないので、何も考えずにbitbakeを実行すると16接続同時にFetchを試みて、サーバー側の同時接続数制限か何かに引っかかってエラーで落ちます。
このエラーが鬱陶しくて困っていたのですが、並列数を2〜4程度(サーバーに蹴られない接続数)に制限して、最初にFetchだけ実行してしまうとよさそうです。
BB_NUMBER_THREADS=2 bitbake core-image-sato --runall=fetch
一度Fetchが終わればその後はFetchしませんから、並列数を16でも32でも好きな数にして良いです。
< | 2024 | > | ||||
<< | < | 09 | > | >> | ||
日 | 月 | 火 | 水 | 木 | 金 | 土 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | - | - | - | - | - |
合計:
本日: