#author("2025-10-24T15:22:09+09:00","default:guest","guest") #author("2025-10-24T15:22:23+09:00","default:guest","guest") *参照元 [#n2be0cc9] #backlinks *説明 [#p48839c4] -パス: [[linux-5.15/]] -パス: [[linux-5.15/mm/vmscan.c]] -FIXME: これは何? --説明 **引数 [#r3bf8c56] -struct lruvec *lruvec -- --[[linux-5.15/lruvec]] -struct scan_control *sc -- --[[linux-5.15/scan_control]] -unsigned long *nr -- **返り値 [#k7ad6030] -なし **参考 [#yb2fbfc0] *実装 [#f1a701a1] /* * Determine how aggressively the anon and file LRU lists should be * scanned. The relative value of each set of LRU lists is determined * by looking at the fraction of the pages scanned we did rotate back * onto the active list instead of evict. * * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan */ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, unsigned long *nr) { struct pglist_data *pgdat = lruvec_pgdat(lruvec); struct mem_cgroup *memcg = lruvec_memcg(lruvec); unsigned long anon_cost, file_cost, total_cost; int swappiness = mem_cgroup_swappiness(memcg); u64 fraction[ANON_AND_FILE]; u64 denominator = 0; /* gcc */ enum scan_balance scan_balance; unsigned long ap, fp; enum lru_list lru; /* If we have no swap space, do not bother scanning anon pages. */ if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { scan_balance = SCAN_FILE; goto out; } - --[[linux-5.15/pglist_data]] --[[linux-5.15/lruvec_pgdat()]] --[[linux-5.15/mem_cgroup]] --[[linux-5.15/lruvec_memcg()]] --[[linux-5.15/mem_cgroup_swappiness()]] --[[linux-5.15/scan_balance]] --[[linux-5.15/lru_list]] --[[linux-5.15/can_reclaim_anon_pages()]] /* * Global reclaim will swap to prevent OOM even with no * swappiness, but memcg users want to use this knob to * disable swapping for individual groups completely when * using the memory controller's swap limit feature would be * too expensive. */ if (cgroup_reclaim(sc) && !swappiness) { scan_balance = SCAN_FILE; goto out; } - --[[linux-5.15/cgroup_reclaim()]] /* * Do not apply any pressure balancing cleverness when the * system is close to OOM, scan both anon and file equally * (unless the swappiness setting disagrees with swapping). */ if (!sc->priority && swappiness) { scan_balance = SCAN_EQUAL; goto out; } /* * If the system is almost out of file pages, force-scan anon. */ if (sc->file_is_tiny) { scan_balance = SCAN_ANON; goto out; } /* * If there is enough inactive page cache, we do not reclaim * anything from the anonymous working right now. */ if (sc->cache_trim_mode) { scan_balance = SCAN_FILE; goto out; } scan_balance = SCAN_FRACT; /* * Calculate the pressure balance between anon and file pages. * * The amount of pressure we put on each LRU is inversely * proportional to the cost of reclaiming each list, as * determined by the share of pages that are refaulting, times * the relative IO cost of bringing back a swapped out * anonymous page vs reloading a filesystem page (swappiness). * * Although we limit that influence to ensure no list gets * left behind completely: at least a third of the pressure is * applied, before swappiness. * * With swappiness at 100, anon and file have equal IO cost. */ total_cost = sc->anon_cost + sc->file_cost; anon_cost = total_cost + sc->anon_cost; file_cost = total_cost + sc->file_cost; total_cost = anon_cost + file_cost; ap = swappiness * (total_cost + 1); ap /= anon_cost + 1; fp = (200 - swappiness) * (total_cost + 1); fp /= file_cost + 1; fraction[0] = ap; fraction[1] = fp; denominator = ap + fp; out: for_each_evictable_lru(lru) { int file = is_file_lru(lru); unsigned long lruvec_size; unsigned long low, min; unsigned long scan; lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low); - --[[linux-5.15/for_each_evictable_lru()]] --[[linux-5.15/is_file_lru()]] --[[linux-5.15/lruvec_lru_size()]] --[[linux-5.15/mem_cgroup_protection()]] if (min || low) { /* * Scale a cgroup's reclaim pressure by proportioning * its current usage to its memory.low or memory.min * setting. * * This is important, as otherwise scanning aggression * becomes extremely binary -- from nothing as we * approach the memory protection threshold, to totally * nominal as we exceed it. This results in requiring * setting extremely liberal protection thresholds. It * also means we simply get no protection at all if we * set it too low, which is not ideal. * * If there is any protection in place, we reduce scan * pressure by how much of the total memory used is * within protection thresholds. * * There is one special case: in the first reclaim pass, * we skip over all groups that are within their low * protection. If that fails to reclaim enough pages to * satisfy the reclaim goal, we come back and override * the best-effort low protection. However, we still * ideally want to honor how well-behaved groups are in * that case instead of simply punishing them all * equally. As such, we reclaim them based on how much * memory they are using, reducing the scan pressure * again by how much of the total memory used is under * hard protection. */ unsigned long cgroup_size = mem_cgroup_size(memcg); unsigned long protection; /* memory.low scaling, make sure we retry before OOM */ if (!sc->memcg_low_reclaim && low > min) { protection = low; sc->memcg_low_skipped = 1; } else { protection = min; } /* Avoid TOCTOU with earlier protection check */ cgroup_size = max(cgroup_size, protection); scan = lruvec_size - lruvec_size * protection / (cgroup_size + 1); /* * Minimally target SWAP_CLUSTER_MAX pages to keep * reclaim moving forwards, avoiding decrementing * sc->priority further than desirable. */ scan = max(scan, SWAP_CLUSTER_MAX); } else { scan = lruvec_size; } scan >>= sc->priority; - --[[linux-5.15/mem_cgroup_size()]] /* * If the cgroup's already been deleted, make sure to * scrape out the remaining cache. */ if (!scan && !mem_cgroup_online(memcg)) scan = min(lruvec_size, SWAP_CLUSTER_MAX); switch (scan_balance) { case SCAN_EQUAL: /* Scan lists relative to size */ break; case SCAN_FRACT: /* * Scan types proportional to swappiness and * their relative recent reclaim efficiency. * Make sure we don't miss the last page on * the offlined memory cgroups because of a * round-off error. */ scan = mem_cgroup_online(memcg) ? div64_u64(scan * fraction[file], denominator) : DIV64_U64_ROUND_UP(scan * fraction[file], denominator); break; case SCAN_FILE: case SCAN_ANON: /* Scan one type exclusively */ if ((scan_balance == SCAN_FILE) != file) scan = 0; break; default: /* Look ma, no brain */ BUG(); } nr[lru] = scan; } } - --[[linux-5.15/mem_cgroup_online()]] *コメント [#f3615659]