参照元†
/**
* struct dma_buf_ops - operations possible on struct dma_buf
* @attach: [optional] allows different devices to 'attach' themselves to the
* given buffer. It might return -EBUSY to signal that backing storage
* is already allocated and incompatible with the requirements
* of requesting device.
* @detach: [optional] detach a given device from this buffer.
* @map_dma_buf: returns list of scatter pages allocated, increases usecount
* of the buffer. Requires atleast one attach to be called
* before. Returned sg list should already be mapped into
* _device_ address space. This call may sleep. May also return
* -EINTR. Should return -EINVAL if attach hasn't been called yet.
* @unmap_dma_buf: decreases usecount of buffer, might deallocate scatter
* pages.
* @release: release this buffer; to be called after the last dma_buf_put.
* @begin_cpu_access: [optional] called before cpu access to invalidate cpu
* caches and allocate backing storage (if not yet done)
* respectively pin the objet into memory.
* @end_cpu_access: [optional] called after cpu access to flush caches.
* @kmap_atomic: maps a page from the buffer into kernel address
* space, users may not block until the subsequent unmap call.
* This callback must not sleep.
* @kunmap_atomic: [optional] unmaps a atomically mapped page from the buffer.
* This Callback must not sleep.
* @kmap: maps a page from the buffer into kernel address space.
* @kunmap: [optional] unmaps a page from the buffer.
* @mmap: used to expose the backing storage to userspace. Note that the
* mapping needs to be coherent - if the exporter doesn't directly
* support this, it needs to fake coherency by shooting down any ptes
* when transitioning away from the cpu domain.
* @vmap: [optional] creates a virtual mapping for the buffer into kernel
* address space. Same restrictions as for vmap and friends apply.
* @vunmap: [optional] unmaps a vmap from the buffer
*/
struct dma_buf_ops {
int (*attach)(struct dma_buf *, struct device *,
struct dma_buf_attachment *);
void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
/* For {map,unmap}_dma_buf below, any specific buffer attributes
* required should get added to device_dma_parameters accessible
* via dev->dma_params.
*/
struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
enum dma_data_direction);
void (*unmap_dma_buf)(struct dma_buf_attachment *,
struct sg_table *,
enum dma_data_direction);
/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
* if the call would block.
*/
/* after final dma_buf_put() */
void (*release)(struct dma_buf *);
int (*begin_cpu_access)(struct dma_buf *, size_t, size_t,
enum dma_data_direction);
void (*end_cpu_access)(struct dma_buf *, size_t, size_t,
enum dma_data_direction);
void *(*kmap_atomic)(struct dma_buf *, unsigned long);
void (*kunmap_atomic)(struct dma_buf *, unsigned long, void *);
void *(*kmap)(struct dma_buf *, unsigned long);
void (*kunmap)(struct dma_buf *, unsigned long, void *);
int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
void *(*vmap)(struct dma_buf *);
void (*vunmap)(struct dma_buf *, void *vaddr);
};
コメント†